TrendNCart

close

Establishing data-intensive learning health systems: an interdisciplinary exploration of the planned introduction of hospital electronic prescribing and medicines administration systems in Scotland

[ad_1]

The identification of different stakeholder experiences and needs is important to catalyse the development of an integrated data strategy to support the effective use and reuse of HEPMA data. Adding to the existing international implementation-related literature, we have identified a number of micro-, meso- and macro-factors that are important in facilitating this in the Scottish context. In particular, our work has highlighted that appropriate user interfaces and sufficient resources are needed to implement systems, and that appropriate infrastructures need to be in place to support collecting data for reuse. Such infrastructural considerations are, however, often neglected in international discourses surrounding data strategies, particularly those surrounding capacity development.1416 Our work further indicates that throughout data strategy planning, it is important to aim for the creation of a learning health system at individual healthcare worker and organisational levels, as this can facilitate data collection and analysis.30 In doing so, there is a need to ensure that users and organisations are motivated and supported to collect accurate data, e.g. in order to improve clinical and organisational performance. Although motivating clinical users has been the subject of many implementation-related efforts, devising effective ways to feedback clinically relevant data to individual users is still a subject of much debate.31 Examining motivations of organisations in reporting data for national aggregation beyond financial incentives is an other issue that has received very little attention and would present a useful next step in exploring how to promote the adoption of national data strategies.

This work may be seen as a starting point, as it has begun investigating how policy decisions in relation to developing strategy to create learning health systems in NHS Scotland may be conceptualised. As such, we have provided contemporaneous insights into senior stakeholder viewpoints associated with the key components of a national strategy, illustrated the main concerns from a variety of perspectives, and provided implications of this work for policy development and future evaluation activities.32 These findings now need to be incorporated into ongoing UK-wide initiatives such as the Farr Institute of Health Informatics Research,33 which is aiming to promote research through data linkage. However, although we facilitated interactive discussions involving a broad range of stakeholders, this work was necessarily limited in scope as only a small number of senior stakeholders were participating (otherwise, the interactive nature of discussions would have been compromised). The transferability of this work to other UK and international contexts may therefore need to be assessed by feeding back emerging results to a wider range of stakeholders and refining policy accordingly. In addition, the close involvement of policy makers may have influenced the results.

A number of recommendations for national strategies to facilitate the creation of learning health systems through HEPMA systems emerge from this work, which we have summarised in Box 5. Although these are likely to be more relevant to countries beginning the journey of system procurement (such as Scotland), they may also be applicable to countries considering a more centralised data strategy in order to effectively aggregate data from locally implemented systems.

Establishing robust information infrastructures is a key for any national healthcare strategy. With the aim of aggregating data on larger and larger scales, such infrastructures may be comparable to other large information networks carrying electronic information like the internet and multi-national corporate systems.29,34 There is therefore a wealth of experience with similar technologies from the information systems literature that healthcare strategy can draw on, particularly in relation to developing risk mitigation strategies. For instance, it is important to recognise that such systems are evolving over time and that they have both technological and social elements.29 In our work, these related to technological systems (hardware and software to collect data) as well as users and organisations (the social element that involves collection and analysis of data). As a result, any strategy to implement associated technologies and social processes needs to be flexible enough to cope with the evolving nature of such systems and their evolving use over time.34 Similarly, technologies need to be adaptable enough to allow for changes in strategy (e.g. in data to be collected) and social contexts of use (e.g. changing professional structures). A number of implications for the design of systems drawing on the literature surrounding information infrastructures have already been outlined and may be applicable to healthcare. These include the need to ensure usability, if possible draw on existing infrastructures, expand use of systems with persuasive tactics, make technological systems easy to use to promote usability and modularise the system in order to promote flexibility.29

Box 5

Policy recommendations for national strategies to facilitate the development of learning health systems

Leadership and vision:

An overall aim to achieve a learning health system should underlie efforts as this can help to ensure that data are used with maximum effect to improve individual, organisational and national processes. Learning health systems are not only required at organisational levels but also at national levels, ensuring that nationally collected data are effectively fed back into organisational activities.

Resources, infrastructure and technical capabilities:

Robust information infrastructures need to be developed to establish a solid base for data entry, data security and reuse. This requires allocation of sufficient resources to procure usable and interoperable systems.

Agreed priorities and definition of minimum datasets:

Standardisation to support semantic/business interoperability is crucial. Minimum datasets at organisational and national levels should be defined as an essential component of any data strategy, as this can help to ensure that data are strategically collected to be useful and fit for intended purposes. If a minimum dataset is not in place, then collected data is less likely to be immediately useful. In addition, it is important to agree some national demonstrator areas/questions drawing on collected data.

Stakeholder buy-in and incentives:

Incentives for individuals and organisations need to be put in place to record desired data. This can help to ensure that data accurately reflect clinical processes and outcomes.

Monitoring and evaluation from the outset:

There is a need to allocate resources to conduct formative and summative independent academic evaluation of system implementation and optimisation activities. This can facilitate learning from experience and help to ensure that technologies enable the creation of learning health systems.

Dissemination and building on successes:

Dissemination of lessons learnt can help to avoid negative experiences. This should be characterised by efforts to build on successes through disseminating working models of data sharing and analysis.

International experiences may also facilitate the refinement of a national (Scotland- or UK-wide) healthcare strategy. For instance, ongoing work surrounding digital maturity in England could help other countries to benchmark and serve as a starting point to develop relevant guidance.35 Similarly, experiences from large health systems in North American settings may help to develop governance structures (such as, for example, surrounding data stewardship and potential partnerships with industry), and promote learning from experiences (e.g. surrounding dealing with potential confounders and timeliness of data, or in helping to establish specialist roles that emerge from new systems such as HEPMA Pharmacists).36 Drawing on experiences from other industries, such as banking and retail, may also be fruitful in terms of future work. There will further be a need to ensure continued national high-level leadership and drive through, for instance, the appointment of Chief Data Scientists,37 and the continued use of financial incentives to promote collection of electronic health data.38

[ad_2]

Source link

Leave a Comment

Your email address will not be published. Required fields are marked *